Las matemáticas se encuentran en cualquier actividad humana, desde el trabajo científico hasta las expresiones culturales y artísticas, y forman parte del acervo cultural de nuestra sociedad. El razonamiento, la argumentación, la modelización, el conocimiento del espacio y del tiempo, la toma de decisiones, la previsión y control de la incertidumbre o el uso correcto de la tecnología digital son características de las matemáticas, pero también la comunicación, la perseverancia, la organización y optimización de recursos, formas y proporciones o la creatividad. Así pues, resulta importante desarrollar en el alumnado las herramientas y saberes básicos de las matemáticas que le permitan desenvolverse satisfactoriamente tanto en contextos personales, académicos y científicos como sociales y laborales.
El desarrollo curricular de las matemáticas se fundamenta en los objetivos de la etapa, prestando especial atención a la adquisición de las competencias clave establecidas en el Perfil de salida del alumnado al término de la enseñanza básica. Dicha adquisición es una condición indispensable para lograr el desarrollo personal, social y profesional del alumnado, y constituye el marco de referencia para la definición de las competencias específicas de la materia.
Las líneas principales en la definición de las competencias específicas de matemáticas son la resolución de problemas y las destrezas socioafectivas. Además, se abordan la formulación de conjeturas, el razonamiento matemático, el establecimiento de conexiones entre los distintos elementos matemáticos, con otras materias y con la realidad, y la comunicación matemática, todo ello con el apoyo de herramientas tecnológicas.
La investigación en didáctica ha demostrado que el rendimiento en matemáticas puede mejorar si se cuestionan los prejuicios y se desarrollan emociones positivas hacia las matemáticas. Por ello, el dominio de destrezas socioafectivas como identificar y manejar emociones, afrontar los desafíos, mantener la motivación y la perseverancia y desarrollar el autoconcepto, entre otras, permitirá al alumnado aumentar su bienestar general, construir resiliencia y prosperar como estudiante de matemáticas.
Por otro lado, resolver problemas no es solo un objetivo del aprendizaje de las matemáticas, sino que también es una de las principales formas de aprender matemáticas. En la resolución de problemas destacan procesos como su interpretación, la traducción al lenguaje matemático, la aplicación de estrategias matemáticas, la evaluación del proceso y la comprobación de la validez de las soluciones. Relacionado con la resolución de problemas se encuentra el pensamiento computacional. Este incluye el análisis de datos, la organización lógica de los mismos, la búsqueda de soluciones en secuencias de pasos ordenados y la obtención de soluciones con instrucciones que puedan ser ejecutadas por una herramienta tecnológica programable, una persona o una combinación de ambas, lo cual amplía la capacidad de resolver problemas y promueve el uso eficiente de recursos digitales.
Las competencias específicas entroncan y suponen una profundización con respecto a las adquiridas por el alumnado a partir del área de Matemáticas durante la Educación Primaria, proporcionando una continuidad en el aprendizaje de las matemáticas que respeta el desarrollo psicológico y el progreso cognitivo del alumnado. Se relacionan entre sí y han sido agrupadas en torno a cinco bloques competenciales según su naturaleza: resolución de problemas (1 y 2), razonamiento y prueba (3 y 4), conexiones (5 y 6), comunicación y representación (7 y 8) y destrezas socioafectivas (9 y 10).
La adquisición de las competencias específicas a lo largo de la etapa se evalúa a través de los criterios de evaluación y se lleva a cabo a través de la movilización de un conjunto de saberes básicos que integran conocimientos, destrezas y actitudes. Estos saberes se estructuran en torno al concepto de sentido matemático, y se organizan en dos dimensiones: cognitiva y afectiva. Los sentidos se entienden como el conjunto de destrezas relacionadas con el dominio en contexto de contenidos numéricos, métricos, geométricos, algebraicos, estocásticos y socioafectivos. Dichos sentidos permiten emplear los saberes básicos de una manera funcional, proporcionando la flexibilidad necesaria para establecer conexiones entre los diferentes sentidos, por lo que el orden de aparición no implica ninguna temporalización ni orden cronológico en su tratamiento en el aula.
El sentido numérico se caracteriza por la aplicación del conocimiento sobre numeración y cálculo en distintos contextos, y por el desarrollo de habilidades y modos de pensar basados en la comprensión, la representación y el uso flexible de los números y las operaciones.
El sentido de la medida se centra en la comprensión y comparación de atributos de los objetos del mundo natural. Entender y elegir las unidades adecuadas para estimar, medir y comparar magnitudes, utilizar los instrumentos adecuados para realizar mediciones, comparar objetos físicos y comprender las relaciones entre formas y medidas son los ejes centrales de este sentido. Asimismo, se introduce el concepto de probabilidad como medida de la incertidumbre.
El sentido espacial aborda la comprensión de los aspectos geométricos de nuestro mundo. Registrar y representar formas y figuras, reconocer sus propiedades, identificar relaciones entre ellas, ubicarlas, describir sus movimientos, elaborar o descubrir imágenes de ellas, clasificarlas y razonar con ellas son elementos fundamentales de la enseñanza y aprendizaje de la geometría.
El sentido algebraico proporciona el lenguaje en el que se comunican las matemáticas. Ver lo general en lo particular, reconociendo patrones y relaciones de dependencia entre variables y expresándolas mediante diferentes representaciones, así como la modelización de situaciones matemáticas o del mundo real con expresiones simbólicas son características fundamentales del sentido algebraico. La formulación, representación y resolución de problemas a través de herramientas y conceptos propios de la informática son características del pensamiento computacional. Por razones organizativas, en el sentido algebraico se han incorporado dos apartados denominados Pensamiento computacional y Modelo matemático, que no son exclusivos del sentido algebraico y, por lo tanto, deben trabajarse de forma transversal a lo largo de todo el proceso de enseñanza de la materia.
El sentido estocástico comprende el análisis y la interpretación de datos, la elaboración de conjeturas y la toma de decisiones a partir de la información estadística, su valoración crítica y la comprensión y comunicación de fenómenos aleatorios en una amplia variedad de situaciones cotidianas.
El sentido socioafectivo integra conocimientos, destrezas y actitudes para entender y manejar las emociones, establecer y alcanzar metas, y aumentar la capacidad de tomar decisiones responsables e informadas, lo que se dirige a la mejora del rendimiento del alumnado en matemáticas, a la disminución de actitudes negativas hacia ellas, a la promoción de un aprendizaje activo y a la erradicación de ideas preconcebidas relacionadas con el género o el mito del talento innato indispensable. Para lograr estos fines, se pueden desarrollar estrategias como dar a conocer al alumnado el papel de las mujeres en las matemáticas a lo largo de la historia y en la actualidad, normalizar el error como parte del aprendizaje, fomentar el diálogo equitativo y las actividades no competitivas en el aula. Los saberes básicos correspondientes a este sentido deberían desarrollarse a lo largo de todo el currículo de forma explícita.
Las competencias específicas, los criterios de evaluación y los saberes básicos están diseñados para facilitar el desarrollo de unas matemáticas inclusivas que permitan el planteamiento de tareas individuales o colectivas, en diferentes contextos, que sean significativas y relevantes para los aspectos fundamentales de las matemáticas. A lo largo de toda la etapa se ha de potenciar el uso de herramientas tecnológicas en todos los aspectos de la enseñanza-aprendizaje ya que estas facilitan el desarrollo de los procesos del quehacer matemático y hacen posible huir de procedimientos rutinarios.
Atendiendo a la diversidad de motivaciones e intereses sociales, culturales, académicos y tecnológicos, la materia de Matemáticas del último curso de la etapa se ha configurado en dos opciones, A y B. Matemáticas A se desarrolla preferentemente mediante la resolución de problemas, la investigación y el análisis matemático de situaciones de la vida cotidiana; mientras que Matemáticas B profundiza, además, en los procedimientos algebraicos, geométricos, analíticos y estadísticos, incorporando contextos matemáticos, científicos y sociales.